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Outline

• Goals and Objectives
• Knowledge Gaps & Challenges
• Recent Experimental Work
• Recommendations for Future Work



Goals and Objectives

• Demonstrate integrated enzyme-based 
cellulose hydrolysis using corn stover (CS) as 
a model feedstock
– Develop and apply tools to generate high-quality 

performance data
– Characterize process interactions
– Identify and bridge knowledge gaps



Major Steps in an Enzymatic Process
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Knowledge Gaps & Challenges

• Knowledge gaps
– Performance data under process-relevant 

conditions
• Individual unit operations and integrated system

– Interactions among unit operations
• Challenges

– Achieving high yields under realistic conditions
– Obtaining good overall and component mass 

balance closures



Recent Experimental Work

• Process-relevant lignocellulose 
saccharification
– Reduces technical and economic risks

• Enzyme adsorption and hydrolytic 
performance
– Improves understanding of cellulose hydrolysis 

• Kinetic model for cellulose hydrolysis
– Facilitates more efficient process development



Experimental System

• Pretreated corn stover (PCS): vertical Sunds 
reactor

• Shake flasks & bench-scale reactors
• 10%-15% (dry wt) PCS solids
• Enzyme: CPN or Spezyme
• Enzyme loading: 20-45 mg protein/g cellulose 
• Temperature: 45°-55°C
• Residence time: 5-7 days



Typical Saccharification Profile with Washed PCS:
45 mg/g protein, 45°C, 10% insoluble solids
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Process-Relevant Saccharification

• Extended previous work with washed PCS
• Effect of hydrolyzate conditioning on 

hydrolysis
– Similar saccharification performance with 

neutralized or overlimed hydrolyzate
– Neutralization used for subsequent work

• Effect of solids levels on hydrolysis
– Shake flask system mass transfer limited at high 

insoluble solids levels, e.g., 15% w/w



Effect of Hydrolyzate Level: Unwashed PCS,
45 mg/g protein, 45°C, 10% insoluble solids, 7 days
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Effect of Hydrolyzate Level: Unwashed PCS,
45 mg/g protein, 45°C, 10% insoluble solids, 7 days
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Enzyme Adsorption and Hydrolytic 
Performance

• Enzyme adsorption, a key factor
– Pretreatment
– Surface area
– Lignin content
– Enzyme

• Hydrolytic performance ∝ Emax

Fad
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B EK
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CS, Lot 1 36.9 
CS, Lot 2 38.9 
PCS, Lot 2 (Most reactive) 59.2 
PCS, Lot 1 (Moderately reactive) 52.8 
PCS, Lot 1 (Least reactive) 57.9 
 



Kinetic Modeling: Motivation

• Cellulose hydrolysis: major cost in the 
process

• Kinetic model codifies knowledge and allows 
in silico predictions

• Actual experimentation resource intensive



Baseline Kinetic Model: Key 
Features

• Distinguishes between the β-glucosidase and 
CBH/EG enzymes

• Incorporates potential inhibition by xylose
• Has structure, e.g., to potentially capture 

effects of
– β-glucosidase levels
– Temperature
– Enzyme adsorption



Hydrolysis Reactions Modeled
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Estimated Model Parameters
Parameter Value 

Independently Established Parameters  
Kad-EG/CBH (g protein/g substrate) 0.4 
Kad-β-glucosidase (g protein/g substrate) 0.1 
Emax-EG/CBH (g protein/g substrate) 0.06 
Emax-β-glucosidase (g protein/g 
substrate) 0.01 
Ea (cal/mole) -5540 
Rs αS/S0, α=1 

Parameters Obtained by Regression of 
Saccharification Data 

k1r (g/mg hr) 22.3 
K1IG2 (g/kg) 0.015 
K1IG (g/kg) 0.1 
K1IX (g/kg) 0.1 
k2r (g/mg hr) 7.18 
K2IG2 (g/kg) 132.0 
K2IG (g/kg) 0.04 
K2IX (g/kg) 0.2 
k3r (hr-1) 285.5 
K3M (g/kg) 24.3 
K3IG (g/kg) 3.9 
K3IX (g/kg) 201.0 
 



Model Validation: Washed PCS, 45 mg/g protein, 45°C, 
10% insoluble solids, 40 g/kg xylose
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Model Validation: Washed PCS, 45 mg/g protein, 45°C, 
10% insoluble solids, 30 or 50 g/kg initial glucose
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Progress in Bridging Knowledge 
Gaps

• Kinetic model: a new predictive tool
• Process-relevant saccharification

– Saccharification works with neutralized 
hydrolyzate

– Resistance to cellobiose inhibition a desirable trait 
for next generation of cellulases

• Improves understanding of configuring the 
overall process to maximize intermediate 
sugars production



Future Work: Cellulose Hydrolysis
• Evaluate 2nd generation enzyme preparations 

under realistic conditions
– Assess wrt conversion yields/rate assumed in 

process engineering model
• Evaluate other issues

– Recommend reactor designs for effectively mixing 
PCS slurries

• Kinetic model
– Extend model to include 2nd generation enzymes
– Incorporate enzyme inactivation and hydrolysis 

capacity factor in kinetic model
– Use model for in silico process optimization



Future Work: Integrated Processing 

• Characterize hydrolyzate conditioning
– Ca, S balance

• Generate engineering data for separation 
processes
– Hydrolyzate and fermentation residue

• Improve carbon/mass balance closure for 
individual unit operations
– Apply new analytical tools



Future Work: Integrated Processing 
(Long Term)

• Integration using a model system
– Pretreatment
– Conditioning
– Saccharification
– Fermentation

• Demonstrate “robustness” under industrially 
relevant conditions
– Necessary to build database for process 

verification
– Reduces performance risk
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